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A general framework for the computation of both the local and the global electromagnetic forces/torques is presented. This
framework relies on a unique principle applicable in 2D and 3D problems, in the presence orbitrary linear and nonlinear materials.
An experimental validation setup is also described in details, for which accurate measurements have been carried out, so that it can
serve as a benchmark. Issues regarding accuracy and convergence are also dealt with.

Index Terms—Magnetic Force, Finite Element Analysis, Permanent Magnet.

I. INTRODUCTION

Practical methods to compute electromagnetic forces are
often presented as a set of apparently unrelated formulae appli-
cable in well-defined conditions (e.g. formulae for the torque
acting on the rigid rotor of an electrical machine, formulae for
the force acting on pointwise particles like charges, dipoles
and moments, formulae for the nodal forces in finite element
meshes, . . . ) Besides the work of Alain Bossavit (e.g. [1]) much
less is said however in the literature about the common theoret-
ical bakground behind that wealth of disparate formulae. The
first purpose of this paper is to recall how such a background
can be established from first thermodynamic principles and,
then, to deduce from it a robust and generic pratical finite
element (FE) implementation for arbitrary materials and 2D/3D
models.

The second purpose of the paper is to describe a benchmark
application in details, for which accurate measurements have
been carried out. The setup of this benchmark consists of
two cylindrical co-axial PM barrels with a variable separating
distance. Extensive geometrical and material data are given in
the paper, so that it can serve as benchmark for the validation
of FE implementations of magnetic force formulae. Finally,
a number of issues regarding the accuracy of the computed
forces and the convergence when the mesh is refined are dealt
with.

II. MAGNETIC FORCES: A DEFINITION

Only magnetic forces are dealt with in this paper. Forces of
electric origin would be defined the same way, considering the
electric flux densisty d instead of the magnetic flux density
b. Let for instance (1), with µ a constant, be the amount of
energy enclosed in an infinitesimal volume element ∆Ω, and v
be the velocity field that represents a continuous deformation
(possibly a virtual one, in the sense of the virtual principle
method) of the system.

∆Ψ(b) =
b · b
2µ

∆Ω. (1)

The variation of energy under this deformation is expressed by
evaluating the Lie derivative Lv of (1)

Lv {∆Ψ(b)} = ∂b {∆Ψ(b)} · Lvb + {Lv∆Ψ} (b)

= {h(b) · Lvb + σEM : gradv}∆Ω. (2)

The first term accounts for the dependency in b of the function
∆Ψ, and it represents the rate of magnetic work, i.e. the
variation of magnetic stored energy, since one has

∂b {∆Ψ(b)} = b/µ · Lvb ∆Ω = vh(b) · Lvb ∆Ω.

The second term is the variation of energy associated with the
variation of the function itself (independenlty of the variation
of its argument), for geometrical reasons related with the fact
that the Lie derivative also applies to the dot product operator ·
and to the volume element ∆Ω. The second term is the power
ẆEM delivered by magnetic forces, which, as shown in [2],
[3], can be written as the tensor product of the gradient of
the velocity field v and a tensor σEM , which we shall call the
electromagnetic stress tensor. The electromagnetic stress tensor
is not commonly invoked as such when dealing with magnetic
forces, although it is the fundamental quantity representing
the electromechanical coupling. The magnetic force density
is the divergence of it, ρFEM = div σEM and, at material
interfaces where σEM is discontinuous, the divergence must
be understood in the sense of distribution, i.e. as the jump of
its normal component across the discontinuity.

Each material has its own expression of σEM . One has

σEM =
bbT

µ
− |b|

2

2µ
I

σEM =
bbT

µ(|b|)
−
(
|b|2

µ(|b|)
− %Ψ

)
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0

x

µ(x)
dx

σEM = µh(b)hT (b)− µ |h(b)|2

2
I, h(b) =

1

µ
(b− J)

with I the identity tensor, respectively for linear materials,
isotropic saturable materials and permanent magnet materials.
In particular, in empty space, µ = µ0 and σEM is the classical
Maxwell stress tensor.

III. EGGSHELL METHOD

The Eggshell method [3] is the generic FE implementation
of this principle. The Maxwell Stress Tensor (MST) method [4]
and the Virtual Work Principle (VWP) method [5] are indeed
particular cases of (2) with, for each, a specific choices of the
velocity field v. The nodal force FN at node N of a mesh
(Coulomb’s method) is obtained by taking v ≡ γNδu where



Fig. 1. User-defined eggshell in 2D

the δu is a vector and γN the nodal shape function of node N .
One has then, by identification of ẆEM with the work done
by FN ,

ẆEM =

∫
Ω

σEM · grad γ dΩ · δu ≡ FN · δu, (3)

and hence a definition for FN after elimination of the arbitrary
δu. These nodal forces are the r.h.s. magnetic terms of the
structural problem. Similarly, the resultant magnetic force FY

acting on a rigid-body region Y is obtained by taking v ≡
δu γY , where γ is any function equal to one on Y and decaying
smoothly down to zero in the air region outside Y . One has
thus, for both cases, a unique generic expression

FX =

∫
Ω

σEM · grad γX dΩ, (4)

where the calculated magnetic force FX is the one correspond-
ing to the velocity field defined by the scalar function γX .

IV. FE IMPLEMENTATION

Having recognized the common origin of the MST and
VWP methods is an advantage when it comes to the FE
implementation, which can then be done generically for 2D/3D
problems and arbitrary materials. The only tool needed is the
ability to define a continuous scalar FE field γX whose value
is one at all nodes of a given region X ∈ Ω (the region
X is pointwise, i.e. a single node, in case of Coulomb’s
method), and zero at all other nodes of Ω, and to evaluate its
gradient. This gradient field vanishes everywhere except on a
one element thick layer around X called eggshell. An efficient
implementation requires to identify the elements of the eggshell
(elements of Ω−X having at least one node in common with
X), and to limit the integration (4) to this support. GetDP
[6] can do this automatically in 2D and 3D. If this feature
is not available however, the shell can also be defined by the
user in the model’s geometry, Fig. 1. For a generic material
independent implementation, the code that evaluates (4) should
also be organized so as to have σEM as a tensor parameter
defined regionwise by the user.

V. EXPERIMENTAL VALIDATION

The experimental valiadtion setup consists of a fixed part
holding the first magnet, and a mobile part holding the second
magnet and to which the force sensor is fixed, Fig. 2. The
distance between the magnets is adjustable by means of an
accurate positioning vertical stage. The air-gap length ranges
between 0 to 5mm and is monitored by a laser displacement
sensor. A precision force sensor (0-200N) is used for mea-
suring the magnetic force. The magnet dimensions (height ×
diameter) are 40 × 14mm for the fixed magnet and 10 ×
14mm for the moving magnet. The PMs are sintered NdFeB

Fig. 2. Experimental setup

Fig. 3. Magnetic force as a function of the air-gap.

(NEOFLUX-GSN35) with a remnant magnetic flux density of
respectively Br = 1.24T and 1.04T. Their relative magnetic
permeability is µr = 1. Fig. 3 shows the comparison of the
measured forces with 3D scalar potential, 3D vector potential
and 2D axisymmetric FE simulations. 3D simulations were
done with code Carmel [7], and 2D simulations with GetDP
[6].

VI. ACCURACY AND CONVERGENCE

Different aspects regarding the accuracy of the computed
forces will be analyzed in the full paper: the position of
the shell in the gap (contact with material objects or not),
the thickness of the shell (aspect ratio of the elements), the
meshsize in the shell, the position of the infinite boundary, etc.
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